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We analyze the dependence of cooperativity of the thermal denaturation transition and folding rates of globular
proteins on the number of amino acid residues,N, using lattice models with side chains, off-lattice Go models,
and the available experimental data. A dimensionless measure of cooperativity,Ωc (0 < Ωc < ∞), scales as
Ωc ≈ Nú. The results of simulations and the analysis of experimental data further confirm the earlier prediction
thatú is universal withú ) 1 + γ, where exponentγ characterizes the susceptibility of a self-avoiding walk.
This finding suggests that the structural characteristics in the denaturated state are manifested in the folding
cooperativity at the transition temperature. The folding rateskF for the Go models and a dataset of 69 proteins
can be fit usingkF ) kF

0 exp(-cNâ). Both â ) 1/2 and2/3 provide a good fit of the data. We find thatkF )
kF

0 exp(-cN1/2), with the average (over the dataset of proteins)kF
0 ≈ (0.2 µs)-1 andc ≈ 1.1, can be used to

estimate folding rates to within an order of magnitude in most cases. The minimal models give identicalN
dependence withc ≈ 1. The prefactor for off-lattice Go models is nearly 4 orders of magnitude larger than
the experimental value.

I. Introduction

Single-domain globular proteins are mesoscopic systems that
self-assemble, under folding conditions, to a compact state with
definite topology. Given that the folded states of proteins are
only on the order of tens of angstroms (the radius of gyration
Rg ≈ 3N1/3 Å,1 whereN is the number of amino acids), it is
surprising that they undergo highly cooperative transitions from
an ensemble of unfolded states to the native state.2,3 Similarly,
there is a wide spread in the folding times as well.4-6 The rates
of folding vary by nearly nine orders of magnitude. Sometime
ago, it was shown theoretically that the folding time,τF, should
depend onN,7-9 but only recently has experimental data
confirmed this prediction.4,6,10-12 It has been shown thatτF can
be approximately evaluated usingτF ≈ τF

0 exp(Nâ) where1/2
e â < 2/3 with the prefactorτF

0 being on the order of a
microsecond.

Much less attention has been paid to finite size effects on
the cooperativity of transition from unfolded states to the native
basin of attraction (NBA). BecauseN is finite, large confor-
mational fluctuations are possible, which require careful
examination.10,13-15 For large enoughN, it is likely that the
folding or melting temperature itself may not be unique.16-18

Although substantial variations inTm are unlikely, it has already
been shown that there is a range of temperatures over which
individual residues in a protein achieve their native state
ordering.16 On the other hand, the global cooperativity, as

measured by the dimensionless parameterΩc (see below for
definition) has been shown to scale as14

The surprising finding in eq 1 requires some discussion. The
result in eq 1 is obtained using the following arguments. From
the definition ofΩc (see eq 2 and subsequent discussions), it
follows that fN ∝ PNBA wherePNBA is the probability of being
in the native basin of attraction. Experimentally,PNBA (or an
equivalent measure) is assessed using spectroscopic signatures
(circular dichroism (CD), fluorescence, etc.) of proteins at low
temperatures or at low denaturant concentrations. In computa-
tions, PNBA is computed from the temperature dependence of
the structural overlap function (eq 6). The fraction of molecules
in the native state isfN ) 1 - 〈ø〉 where 〈 〉 is the thermal
average. Thus, the dimensionless measure of cooperativityΩc

can be written as

whereTF is the folding temperature and∆T is the full width at
half-maximum of d〈ø〉/dT. The folding temperature can be
identified with the peak in d〈ø〉/dT or in the fluctuations inø,
namely, ∆ø ) 〈ø2〉 - 〈ø〉2. Using an analogy to magnetic
systems, we identifyT(∂〈ø〉/∂h) ) ∆ø whereh is an “ordering
field” that is conjugate toø. Since∆ø is dimensionless, we
expect h ≈ T for proteins, and hence,T(∂〈ø〉/∂T) is like
susceptibility. Hence, the scaling ofΩc on N should follow the
way (TF/∆T) ∆ø changes withN.

With the analogy to magnetic systems, we can obtain eq 1
by noting that for efficient folding in proteinsTF ≈ TΘ where
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Ωc ≈ Nú (1)

Ωc )
TF

2

∆T
∂〈ø〉
∂T

(2)
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TΘ is the temperature at which the coil-to-globule transition
occurs. It has been argued thatTF for proteins may well be a
tricritical point, because the transition atTF is first-order while
the collapse transition is (typically) second-order. Then, as
temperature approaches from above, we expect that the char-
acteristics of polypeptide chains atTΘ should manifest them-
selves in the folding cooperativity. At or aboveTF, the global
conformations of the polypeptide chains as measured byRg obey
the Flory law, i.e.,Rg ≈ aNν whereν ≈ 0.6.19

We expect thatRg ≈ ∆T-ν at temperatures close toTF ≈ Tθ.
If we use the magnet analogy for random coils or self-avoiding
walks, Rg is like the correlation length. Thus,∆T/TF ≈ 1/N.
BecauseT(∂〈ø〉/∂T) is a generalized susceptibility, we expect
T(∂〈ø〉/∂T) ≈ Nν. By combining these two reasons, eq 1 is
obtained.

The expectation that the random coil nature of the polypeptide
chains atT ≈ Tθ ≈ TF should be reflected in the thermodynamic
folding cooperativity has important consequences. First, the
exponentú is universal and is typically related toγ. The exact
mapping of the self-avoiding walk ton-vector spins orn-
component field theory lets us use the numerical value ofγ ≈
1.2 to getú ) 2.2. It should be recalled that entropy of the
random coil states (or compact states) is extensive. However,
because globally unfolded chains are like random coils (Rg ≈
aN0.6), there is a logarithmic correction to the entropy that is
characterized by theγ exponent. It is for this reason that we
predictΩc ≈ Nú with ú ) 2.2 for temperatures in the vicinity
of TF.

In this paper, we use lattice models with side chains (LMSC),
off-lattice Go models for 23 proteins, and experimental results
for a number of proteins to further confirm the theoretical
predictions. Our results show thatú ≈ 2.22, which isdistinct
from the expected result(ú ) 2.0) for a strong first-order
transition.20 The larger data set of proteins for which folding
rates are available shows that the folding time scales as

with c ≈ 1.1, â ) 1/2, andτ0 ≈ 0.2 µs.

II. Models and Methods

A. Lattice Models with Side Chains (LMSC). Each amino
acid is represented using the backbone (B) CR atom that is
covalently linked to a unified atom representing the side chain
(SC). Both the CR atoms and the SCs are confined to the vertexes
of a cubic lattice with spacinga. Thus, a polypeptide chain
consisting ofN residues is represented using 2N beads. The
energy of a conformation is

where εbb, εbs, and εss are backbone-backbone (BB-BB),
backbone-side chain (BB-SC), and side chain-side chain
(SC-SC) contact energies, respectively. The distancesrij

bb, rij
bs,

and rij
ss are between BB, BS, and SS beads, respectively. The

contact energiesεbb, εbs, andεss are taken to be-1 (in units of
kbT) for native and 0 for non-native interactions. The neglect
of interactions between residues not present in the native state
is the approximation used in the Go model. Because we are
interested in general scaling behavior, the use of the Go model
is justified. We should emphasize thatΩc can also be used even
for proteins that are not judged to be calorimetrically two-state

like. Indeed, in the original study,27 Ωc was used to analyze
pH-dependent cooperativity of the folding transition of apomyo-
globin.

Our purpose here is to restrict ourselves to apparent two-
state folders, and hence, we have used Go models. We expect
our results to hold even for well-optimized sequences that also
include non-native interactions.

B. Off-Lattice Model. We employ coarse-grained off-lattice
models for polypeptide chains in which each amino acid is
represented using only the CR atoms.21 Furthermore, we use a
Go model22 in which the interactions between residues forming
native contacts are assumed to be attractive and the non-native
interactions are repulsive. Thus, by definition for the Go model,
the PDB structure is the native structure with the lowest energy.
The energy of a conformation of the polypeptide chain specified
by the coordinatesri of the CR atoms is23

Here,∆φi ) φi - φ0i, Rij ) r0ij/rij; ri,i+1 is the distance between
beadsi and i + 1, θi is the bond angle between bonds (i - 1)
andi, andφi is the dihedral angle around theith bond andrij is
the distance between theith andjth residues. Subscripts 0, NC,
and NNC refer to the native conformation, native contacts, and
non-native contacts, respectively. Residuesi andj are in native
contact if r0ij is less than a cutoff distancedc ) 6 Å, where
r0ij is the distance between the residues in the native conforma-
tion.

The first harmonic term in eq 5 accounts for chain connectiv-
ity, and the second term represents the bond angle potential.
The potential for the dihedral angle degrees of freedom is given
by the third term in eq 5. The interaction energy between
residues that are separated by at least three beads is given by
10-12 Lennard-Jones potential. A soft sphere (last term in eq
5) repulsive potential disfavors the formation of non-native
contacts. We chooseKr ) 100εH/Å2, Kθ ) 20εH/rad2, Kφ

(1) )
εH, andKφ

(3) ) 0.5εH, whereεH is the characteristic hydrogen
bond energy andC ) 4 Å.

C. Simulations.For the LMSC, we performed Monte Carlo
simulations using the previously well-tested move set MS3.36

This move set ensures that ergodicity is obtained efficiently even
for N ) 50; it uses single, double, and triple bead moves.38

Following standard practice, the thermodynamic properties are
computed using the multiple histogram method.25 The kinetic
simulations are carried out by a quench from high temperature
to a temperature at which the NBA is preferentially populated.
The folding times are calculated from the distribution of first
passage times.

For off-lattice models, we assume that the dynamics of the
polypeptide chain obeys the Langevin equation. The equations
of motion were integrated using the velocity form of the Verlet
algorithm with the time step∆t ) 0.005τL, whereτL ) (ma2/
εH)1/2 ≈ 3 ps. To calculate the thermodynamic quantities, we
collected histograms for the energy and native contacts at five
or six different temperatures (at each temperature, 20-50
trajectories were generated depending on proteins). As with the
LMSC, we used the multiple histogram method25 to obtain the
thermodynamic parameters at all temperatures.

τF ) τ0 exp(cNâ) (3)

E ) εbb ∑
i)1,j>i+1

N

δrij
bb,a + εbs ∑

i)1,j*i

N

δrij
bs,a + εss ∑

i)1,j>i

N

δrij
ss,a (4)

E ) ∑
bonds

Kr(ri,i+1 - r0i,i+1)
2 + ∑

angles

Kθ(θi - θ0i)
2 +

∑
dihedral

{Kφ
(1)[1 - cos(∆φi)] + Kφ

(3)[1 - cos 3(∆φi)]} +

∑
i>j-3

NC

εH[5Rij
12 - 6Rij

10] + ∑
i>j-3

NNC

εH(C

rij
)12

(5)
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For off-lattice models, the probability of being in the native
state is computed using

where∆ij is equal to 1 if residuesi andj form a native contact
and 0 otherwise,QT is the total number of native contacts, and
θ(x) is the Heaviside function. For the LMSC model, we used
the structural overlap function24

The overlap functionø, which is one if the conformation of the
polypeptide chain coincides with the native structure and is small
for unfolded conformations, is an order parameter for the
folding-unfolding transition. The probability of being in the
native statefN is fN ) 〈f〉 ) 1 - 〈ø〉, where〈...〉 denotes a thermal
average.

D. Cooperativity. The extent of cooperativity of the transition
to the NBA from the ensemble of unfolded states is measured
using the dimensionless parameter

where∆T is the full width at half-maximum of dfN/dT and the
folding temperatureTF is identified with the maximum of dfN/
dT. Two points aboutΩc are noteworthy. (1) For proteins that
melt by a two-state transition, it is trivial to show that∆HvH )
4kB∆TΩc, where∆HvH is the van’t Hoff enthalpy atTF. For an
infinitely sharp two-state transition, there is a latent heat release
at TF, at whichCp can be approximated by a∆ function. In this
case,Ωc f ∞, which implies that∆HvH and the calorimetric
enthalpy∆Hcal (obtained by integrating the temperature depen-
dence of the specific heatCp) would coincide. It is logical to
infer that asΩc increases the ratioκ ) ∆HvH/∆Hcal should
approach unity. (2) Even for moderately sized proteins that
undergo a two-state transition,κ ≈ 1.3 It is known that the extent
of cooperativity depends on external conditions, as has been
demonstrated for thermal denaturation of CI2 at several values
of pH.26 The values ofκ for all pH values are∼1. However,
the variation in cooperativity of CI2 as pH varies are reflected
in the changes inΩc.27 Therefore, we believe thatΩc, which
varies in the range 0< Ωc < ∞, is a better descriptor of the
extent of cooperativity thanκ. The latter merely tests the
applicability of the two-state approximation.

III. Results

A. Dependence ofΩc on N. For the 23 Go proteins listed in
Table 1, we calculatedΩc from the temperature dependence of
fN. In Figure 1, we compare the temperature dependence offN(T)
and dfN(T)/dT for â-hairpin (N ) 16) and Bacillus subtilis
(CpsB, N ) 67). It is clear that the transition width and the
amplitudes of dfN/dT obtained using Go models compare only
qualitatively well with experiments. As pointed out by Kaya
and Chan,28-31 the simple Go-like models consistently under-
estimate the extent of cooperativity. Nevertheless, both the
models and the experiments show thatΩc increases dramatically
asN increases (Figure 1).

The variation ofΩc with N for the 23 proteins obtained from
the simulations of Go models is given in Figure 2. From the ln
Ωc-ln N plot, we obtainú ) 2.40( 0.20 andú ) 2.35( 0.07
for off-lattice models and LMSC, respectively. These values
of ú deviate from the theoretical predictionú ≈ 2.22. We suspect

f )
1

QT
∑

i<j+1

N

θ(1.2r0ij - rij)∆ij (6)

ø )
1

2N2 - 3N + 1
[∑

i<j

δ(rij
ss- rij

ss,N) + ∑
i<j+1

δ(rij
bb - rij

bb,N) +

∑
i*j

δ(rij
bs - rij

bs,N)] (7)

Ωc )
TF

2

∆T|dfN
dT|

T)TF

(8)

TABLE 1: List of 23 Proteins Used in the Simulations

protein N PDB codea Ωc
b δΩc

c

â-hairpin 16 1PGB 2.29 0.02
R-helix 21 no code 0.803 0.002
WW domain 34 1PIN 3.79 0.02
Villin headpiece 36 1VII 3.51 0.01
YAP65 40 1K5R 3.63 0.05
E3BD 45 7.21 0.05
hbSBD 52 1ZWV 51.4 0.2
protein G 56 1PGB 16.98 0.89
SH3 domain (R-spectrum) 57 1SHG 74.03 1.35
SH3 domain (fyn) 59 1SHF 103.95 5.06
IgG-binding domain of

streptococcal protein L
63 1HZ6 21.18 0.39

chymotrypsin inhibitor 2 (CI-2) 65 2CI2 33.23 1.66
CspB (Bacillus subtilis) 67 1CSP 66.87 2.18
CspA 69 1MJC 117.23 13.33
ubiquitin 76 1UBQ 117.8 11.1
activation domain

procarboxypeptidase A2
80 1AYE 73.7 3.1

His-containing phosphocarrier
protein

85 1POH 74.52 4.2

hbLBD 87 1K8M 15.8 0.2
tenascin (short form) 89 1TEN 39.11 1.14
Twitchin Ig repeat 27 89 1TIT 44.85 0.66
S6 97 1RIS 48.69 1.31
FKBP12 107 1FKB 95.52 3.85
ribonuclease A 124 1A5P 69.05 2.84

a The native state for use in the Go model is obtained from the
structures deposited in the Protein Data Bank.b Ωc is calculated using
eq 8 withfN ) 〈ø(T)〉. c 2 δΩc ) |Ωc - Ωc1| + |Ωc - Ωc2|, whereΩc1

andΩc2 are values of the cooperativity measure obtained by retaining
only one-half the conformations used to computeΩc.

Figure 1. The temperature dependence offN and dfN/dT for â-hairpin
(N ) 16) and CpsB (N ) 67). The scale for dfN/dT is given on the
right. (a) The experimental curves were obtained by using∆H ) 11.6
kcal/mol andTm ) 297 K, and∆H ) 54.4 kcal/mol andTm ) 354.5
K for â-hairpin and CpsB, respectively. (b) The simulation results were
calculated fromfN ) 〈ø(T)〉. The Go model gives only a qualitatively
reliable measure offN(T).
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that this is due to large fluctuations in the native state of
polypeptide chains that are represented using minimal models.
Nevertheless, the results for the minimal models rule out the
value ofú ) 2 that is predicted for systems that undergo first-
order transition. The near-coincidence ofú for both models show
that the details of interactions are not relevant.

For the 34 proteins (Table 2) for which we could find thermal
denaturation data, we calculatedΩc using∆H andTF (referred
to as the melting temperatureTm in the experimental literature).
From the plot of lnΩc versus lnN, we find thatú ) 2.17 (
0.09. The experimental value ofú, which also deviates fromú
) 2, is in much better agreement with the theoretical prediction.
The analysis of the experimental data requires care, because
the compiled results were obtained from a number of different
laboratories around the world. Each laboratory uses different
methods to analyze the raw experimental data, which invariably
leads to varying methods to estimate errors in∆H andTm. To
estimate the error bar forú, it is important to consider the errors
in the computation ofΩc. Using the reported experimental errors
in Tm and ∆H, we calculated the varianceδ2Ωc using the
standard expression for the error propagation.14,39 The upper
bound in the error inΩc for the 34 proteins is given in Table 2.

To provide an accurate evaluation of the errors in the exponent
ú, we used a weighted linear fit, in which each value of lnΩc

contributes to the fit with the weight proportional to its standard
deviation.14,39

B. Dependence of Folding Free Energy Barrier onN. The
simultaneous presence of stabilizing (between hydrophobic
residues) and destabilizing interactions involving polar and
charged residues in polypeptide chain renders the native state
only marginally stable.2 The hydrophobic residues enable the
formation of compact structures, while polar and charged
residues, for whom water is a good solvent, are better accom-
modated by extended conformations. Thus, in the folded state,
the average energy gain per residue (compared to expanded
states) is-εH (≈1-2 kcal/mol), whereas because of chain
connectivity and surface area burial, the loss in free energy of
exposed residues isεP ≈ εH. Because there are a large number
of solvent-mediated interactions that stabilize the native state,
even whenN is small, it follows from the central limit theorem
that the barrier heightâ∆Gq, whose lower bound is the
stabilizing free energy, should scale as∆Gq ≈ kBTxN.7 A
different physical picture has been used to argue that∆Gq ≈
kBTN2/3.8,9 Both scenarios show that the barrier to folding rates
scales sublinearly withN.

The dependence of lnkF (kF ) τF
-1) onN using experimental

data for 69 proteins12 and the simulation results for the 23
proteins is consistent with the predicted behavior that∆Gq )
ckBTxN with c ≈ 1 (Figure 3). The correlation between the
experimental results and the theoretical fit is 0.74, which is
similar to the previous analysis using a set of 57 proteins.10 It
should be noted that the data can also be fit using∆Gq ≈
kBTN2/3. The prefactorτF

0 using theN2/3 fit is over an order of
magnitude larger than for theN1/2 behavior. In the absence of
accurate measurements for a larger data set of proteins, it is
difficult to distinguish between the two power laws for∆Gq.

Previous studies32,33 have shown that there is a correlation
between folding rates andZ-score, which can be defined as

whereGN is the free energy of the native state,〈GU〉 is the
average free energy of the unfolded states, andσ is the
dispersion in the free energy of the unfolded states. From the

TABLE 2: List of 34 Proteins for Which Ωc Is Calculated Using Experimental Dataa

protein N Ωc
b δΩc

c protein N Ωc
b δΩc

c

BH8 â-hairpin41 12 12.9 0.5 SS07d51 64 555.2 56.2
HP1â-hairpin42 15 8.9 0.1 CI226 65 691.2 17.0
MrH3a â-hairpin41 16 54.1 6.2 CspTm52 66 558.2 56.3
â-hairpin43 16 33.8 7.4 Btk SH353 67 316.4 25.9
Trp-cage protein44 20 24.8 5.1 binary pattern protein54 74 273.9 30.5
R-helix45 21 23.5 7.9 ADA2h55 80 332.0 35.2
villin headpeace46 35 112.2 9.6 hbLBD56 87 903.1 11.1
FBP28 WW domain47d 37 107.1 8.9 tenascin Fn3 domain57 91 842.4 56.6
FBP28 W30A WW domain47d 37 90.4 8.8 Sa RNase58 96 1651.1 166.6
WW prototype47d 38 93.8 8.4 Sa3 RNase58 97 852.7 86.0
YAP WW47d 40 96.9 18.5 HPr59 98 975.6 61.9
BBL48 47 128.2 18.0 Sa2 RNase58 99 1535.0 156.9
PSBD domain48 47 282.8 24.0 barnase60 110 2860.1 286.0
PSBD domain48 50 176.2 13.0 RNase A61 125 3038.5 42.6
hbSBD49 52 71.8 6.3 RNase B61 125 3038.4 87.5
B1 domain of protein G50 56 525.7 12.5 lysozyme62 129 1014.1 187.3
B2 domain of protein G50 56 468.4 20.0 interleukin-1â63 153 1189.6 128.6

a The calculatedΩc values from experiments are significantly larger than those obtained using the Go models (see Table 1).b Ωc is computed
at T ) TF ) Tm using the experimental values of∆H andTm. c The error inδΩc is computed using the proceedure given in refs 14 and 35.d Data
are averaged over two salt conditions at pH 7.0.

Figure 2. Plot of ln Ωc as a function of lnN. The red line is a fit to
the simulation data for the 23 off-lattice Go proteins from which we
estimateú ) 2.40( 0.20. The black line is a fit to the lattice models
with side chains (N ) 18, 24, 32, 40, and 50) withú ) 2.35( 0.07.
The blue line is a fit to the experimental values ofΩc for 34 proteins
(Table 2) with ú ) 2.17 ( 0.09. The larger deviation inú for the
minimal models is due to lack of all the interactions that stabilize the
native state.

ZG )
GN - 〈GU〉

σ
(9)
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fluctuation formula, it follows thatσ ) xkBT2Cp so that

Since∆G andCp are extensive, it follows thatZG ≈ N1/2. This
observation establishes an intrinsic connection between the
thermodynamics and kinetics of protein folding that involves
formation and rearrangement of noncovalent interactions. In an
interesting recent note,12 it has been argued that the finding∆Gq

≈ kBTxN can be interpreted in terms ofnσ in which ∆G in eq
10 is replaced by∆H. In either case, there appears to be a
thermodynamic rationale for the sublinear scaling of the folding
free energy barrier.

IV. Conclusions

We have reexamined the dependence of the extent of
cooperativity as a function ofN using lattice models with side
chains, off-lattice models, and experimental data on thermal
denaturation. The finding thatΩc ≈ Nú at T ≈ TF with ú > 2
provides additional support for the earlier theoretical predic-
tions.14 More importantly, the present work also shows that the
theoretical value forú is independent of the precise model used
which implies thatú is universal. It is surprising to find such
general characteristics for proteins for which specificity is often
an important property. We should note that accurate values of
ú andΩc can only be obtained using more refined models that
perhaps include desolvation penalty.29,34

In accord with a number of theoretical predictions,7-9,35-37

we found that the folding free energy barrier scales only
sublinearly withN. The relatively small barrier is in accord with
the marginal stability of proteins. Since the barriers to global
unfolding are relatively small, it follows that there must be large
conformational fluctuations even when the protein is in the
NBA. Indeed, recent experiments show that such dynamical
fluctuations that are localized in various regions of a monomeric
protein might play an important functional role. These observa-
tions suggest that small barriers in proteins and RNA40 might
be general characteristics of all natural sequences.

There have been successful empirical attempts to obtain
folding rates using simple characteristics of the native

structures.64-66 These studies show that proteins dominated by
long-range (measured in terms of sequence separation) contacts
between residues fold more slowly than those that have a large
number of short-range contacts. The topological characteristics
that are used in the contact order are not unrelated to size.
Indeed, more recent considerations that takeN into account give
a better correlation between folding rates and modified contact
order. Thus, both the architecture of the fold and size are
important determinants of folding rate.
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